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On the basis of a “channel” model an attempt has been made to account for the limitation of the 
number of possible chain conformations in bulk elastomer. Each chain is supposed to fluctuate 
near its average position-the “channel”. determined by the conditions of bulk polymer 
formation. Then the probability of a certain chain conformation existence is reduced with the 
increase of its deviations from the channel axis. Chain fluctuations along the channel axis are 
free from any constraints because such a change of the chain conformations is not connected 
with the variation of its neighbours locations. In the first approximation (when the chain and 
the channel are divided into two parts) the calculations based on the model pointed out lead to 
the free energy formula deduced earlier by the author while starting from partly different 
assumptions. The formula fits well the experimental data for various types of deformations.” 
Particularly, the theoretical dependence of true stress. u, on deformation has a linear form when 
plotted in coordinates a/2(12 - l / I )  versus I / l ( I  is the extension ratio). It permits consideration 
of the present study as being a theoretical basis for the Monney~ Rivlin formula from the molecu- 
lar point of view. Calculated on the same grounds. the theoretical dependence of birefringence. 
An. on 1 at uniaxial tension also has a linear form in coordinates An/2(IZ - l / I )  versus l / I  in 
accordance with the experimental observations. However, it has a somewhat larger slope than 
the corresponding dependence for u. Therefore An/u is found to be only slightly dependent 
function of I ,  i.e. according to the theory presented Bruster’s law should hold for rubbers only 
approximately. 

I NTR 0 D U CTlO N 

The classical rubber-like elasticity is known to lead to considerable 
deviations from experiment4, when describing the different types of the 
deformational interrelations. Many attempts based on the various physical 
premises have been made to  improve the Without any critical 
discussion of these works we point out only that the weakest point in the 

?Presented at the 10th All-Union Symposium on Polymer Rheology, held June 20-24, 1978, 
in Perm, USSR. 

99 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
5
0
 
2
3
 
J
a
n
u
a
r
y
 
2
0
1
1



100 L. s. PRISS 

classical theory of rubber elasticity lies in the consideration of the network 
of “phantom chains” transparent to one another and themselves. Such a 
situation differs considerably from that in the real bulk elastomers where the 
number of possible chain conformations is essentially restricted by the pre- 
sence of neighbours. Therefore the recent attempts’ ss l6 to take into con- 
sideration the steric interactions between the network chains are of great 
interest. These theories could be named as theories of the real polymer net- 
works because the model accepted there reproduces the reality of the strain 
of bulk elastomers much better than the classical ones. Unfortunately at the 
present stage the conclusions of these theories cannot be examined experi- 
mentally in detail, and some of their starting points are open to doubt. 

The basic physical idea of works by Edwards” and Helmis,16 taking into 
account the influence of surrounding chains, is the same as in the early 
published papers by the author.”-’9 As follows from these papers,lg our 
results fit quite well the experimental data on various types of deformation 
and give qualitative explanations for a wide scope of experimental regularities 
in the equilibrium properties of rubber-like materials. However the presenta- 
tion of the theory in the papers cited somehow lacked the necessary strictness. 
In particular, it was based on the consideration of the chain conformations 
arising after very rapid (instantaneous) deformation and their consequent 
change during the stress relaxation. Thereby it has been postulated that the 
process of the recovery of equilibrium distribution of chain conformations 
can not reach total completion in the deformed state due to steric obstruc- 
tions from the neighbouring chains. Although one has no doubts about this 
statement, the confinement pointed out did not follow from the model 
accepted for calculation, which left a certain feeling of dissatisfaction. 

The object of the present study is twofold. First we wish to present the 
theory more rigorously on the basis of the slightly modified ideas about a 
“channel”, which were already used in the works cited.15*16 It will allow us 
to ignore the non-equilibrium state as an intermediate stage and to reveal 
more strictly the essence of the assumptions made during the development 
of the theory. 

Secondly, we wish to develop the theory of rubber birefringence on the 
basis of the same notions about the “channel”. According to the classical 
rubber-like elasticity theory, Bruster’s law is known to hold, i.e. the propor- 
tionality must be observed in strained rubber between the birefringence An 
and stress (T, based on the cross-sectional area of the deformed  ample.^ The 
validity of this conclusion has been frequently checked experimentally, the 
values of Bruster’s constant c = An/o being always close to those calculated 
from the optical anisotropy of the polymeric chains.20 But despite this, the 
present state of the rubber birefringence theory is not quite satisfactory. As 
has been already pointed out, dependences of the stress on the deformation 
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ELASTICITY/BIREFKINGENCE OF RUBBERS 101 

E as predicted by the classical theory are not in accord with experiment. The 
same is true of the theoretical dependences of An on E . ~ ~ ~ ~ ~  And only the 
similar nature of divergences in both cases permits the theory to give the 
correct interrelation between An and 0. That is why the development of the 
birefringence theory to  describe correctly the dependency of An on E, is a 
necessary task for improving the rubber elasticity theory. 

PHYSICAL PREMISES OF THE THEORY 

Flory2 was the first to pay attention to steric interaction between the network 
chains. He has pointed out that the entanglements of the type shown in 
Figure la, act as extra effective network junctions. Since then the conception 
of entanglements gained popularity. Its various aspects has been reviewed 
by G r a e ~ s l e y . ~ ~  However, as pointed out in the work elsewhere,” the steric 
interaction of the entanglement type does not differ in principle from that 
shown in Figure l b  when the chains are crossed. In both cases the chains 
AB and CD mutually restrict the number of possible conformations, the 
extent of this restriction being dependent on the distance d between their 
axes. When d = 0 the situations shown in Figures la  and 1 b become equiva- 
lent and in the case of negative d (i.e. when the chain AB in Figure Ib  is dis- 
placed upwards above the chain CD) the crossed chains become entangled. 
Let us pay attention to one essential detail. Due to free slipping in the contact 
point both types of steric interaction have no influence on the value of chain 
fluctuations in the direction of their end-to-end vectors ; only the distribution 
function of their transverse dimensions is disturbed. 

It is apparent that in bulk polymer the situations shown in Figure 1 are 
repeated many times along a certain chain. So one can imagine the location 

FIGURE 1 Various types of the steric chain interactions: a entanglement, h crossed chains. 
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102 L. S. PRlSS 

of the chain in bulk such as shown schematically in Figure 2. Due to entangle- 
ments and chain crossing the chain is kept near a certain average position- a 
"channel". Any deviation from the channel causes the deformation of the 
contacting chains that generates an elastic force to return the chain to the 
previous position. It takes place only for deviations normal to the channel 
contour; the displacement of the chain along its channel as mentioned above 
does not meet any obstruction. It is one of the differences in the model con- 
struction accepted in the present work and in the works elsewhere.15* '' The 
latter assume that the fluctuations of the intermediate chain links positions 
are restricted to  the same extent in all directions. We believe this assumption 
to be insufficiently realistic. 

I 
I 

I 
I 

FIGURE 2 
tanglements; c.d-crossed chains. 

Chain in bulk elastomer (scheme): 1 -the chain under consideration; a,b ~ en- 

The situation shown in Figure 2 can be reproduced by the model shown 
in Figure 3. One of the possible chain conformations is marked here by the 
fat black curve, and the channel by the hollow one. The chain is divided into 
a certain number of equal segments-submolecules which junction points 

FIGURE 3 
tion. 

The model ofa  "channel"(scheme): I-the channel, 2-the chain under considera- 
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ELASTICITY/BIREFRINGENCE OF RUBBERS 103 

are connected to the channel by means of the springs imitating elastic re- 
sponse of the environment. The springs are rigidly attached to the chain and 
slip freely along the channel contour. To complete the model construction 
one needs some other quite natural assumptions: 

1) In the case of the chains having the same end-to-end vectors R, the 
distribution function of channel conformations is identical to that for an 
isolated chain fixed at the same points. 

2) All channel contours are deformed affinaly with gross behavior of the 
sample. 

3) The direction of the channel at a given point of its division into equal 
parts is assumed to coincide with the direction of the straight line connecting 
two adjacent points of channel division. 

Other assumptions are similar to those of conventional rubber elasticity 
theory. Unfortunately, essential mathematical difficulties are met when one 
calculates the model with arbitrary number of division points. So we confine 
ourselves to considering only the first approximation when the chains are 
divided solely into two submolecules. In this case, according to the above 
assumption, the chain end-to-end vector should be assumed as giving the 
direction of the channel. 

THEORY, THE FIRST APPROXIMATION 

Let the sample of cured elastomer be deformed in three mutually perpendicu- 
lar directions by the extension ratios A l ,  A 2  and ,I3. Then, in accordance with 
the assumptions made, the distance between the ends of a certain chain, 
characterized by the vector R' = XT+ Yy+Zz for an unstrained system, will 
be determined now by 

and the vector fi  that determined the location of the point of channel division 
will be transformed into fi' = A , 5 ; f + A 2 $ + A 3 @ .  Given the chain under 
discussion consists of N links each of length I ,  the distribution function of its 
conformations characterized by the location of the middle chain link (x, y, 
z), will be 
W,(x,y,z)dxdydz = Rexp{ - ~ ~ [ x ~ + ~ ~ + z ~ + ( , I ~ X - X ) ~ + ( A ~  Y - Y ) ~  

R'=  A1XT+A2 Y7+A3ZE (1) 

+ ( A , ~ - z ) ~ ] j . e x p  { -~ dx dy dz 

= R . W ( X ,  y, Z) dx dy dz 
where c1 = 3/N12,  and R is a normalization factor. 
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104 L. S. PRISS 

The last exponent in (2) is the Boltzmann factor giving the statistical weight 
of chain conformation at different extent of its deviation from the channel 
contour. K' is the proportionality factor between elastic response of the 
surrounding chains at the junction of the submolecules and the deviation of 
the point from the channel contour-k. Note that in the first approximation 
of the theory the action of the surrounding chains on the whole chain under 
consideration is assumed to be concentrated at the junction point of the two 
submolecules. Since, in accordance with the ideas developed, K is of a kinetic 
origin it is convenient t o  introduce a new notation 

K = K'/2kT (3) 
According to the model accepted h is the projection of the vector between 

the division point of the chain and that of the channel on the plane normal 
to the channel contour. Obviously, for the first approximation under 
discussion 

where 'r = xi+yj'+zE is a vector describing the position of the middle point 
of the chain. 

Entropy of the chain under consideration may be represented as a sum of 
entropies of its two comprising submolecules : 

= [(i. - P ' ) R ' ] 2 / R ' 2  (4) 

S ,  = - ka[(r2) + ((p-?)')] 

= -ka(]( [ r 2 + ( R " - F ) 2 ] W , ( ~ , y , z ) d x  d y d z  
-a, 

= ka I' In{ j[{ W ( x ,  y, z )  dx  dy dz 
da 

- 0 u  

d 
= ko!-1nJ 

do! 
Adding the exponents in (2) one has 

W ( x ,  Y ,  z )  = expi - B(x, Y ,  GI)} 
= exp{ - [(2a + K - qA:Xz)x2  + (2o!+ K - qA: Y 2 ) y 2  

+(2a + K - 41: Z 2 ) z 2  - 2q1,A2 X Y x y  - 2qA1A3 X Z x z  
-2q1213 Y Z y ~ - 2 A 1 p , ~ - 2 1 2 p , y - 2 A 3 p , Z + ~ R ' ~  
-q[P'a'121) (6) 

where 
fi  = .a' + KP' - qR'(p'p); q = K/R" 

To calculate J the exponent in (6 )  should be diagonalized. It could be done 
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ELASTICITY/BIREFRINGENCE OF RUBBERS 105 

by Jacobi procedurez4 considering B(x, y ,  z, 1 )  as a quadratic form of four 
variables, the last of which equalizes to 1.  The diagonalized quadratic form 
will be 

B(x’, y’, z’, 1 )  = 9 1 ~ ‘ ~  + ( 9 2 / 9 1 ) y ”  + ( 9 3 / 9 2 ) f 2 + ( 9 4 / 9 3 )  (7) 
where Di are angular minors of the i order of the original quadratic form 
B(x,  y ,  z, 1) matrix. 

Jackobian of the transformation carried out is equal to 1.  Therefore : 

Direct calculations give : 
9 3  = 2a(K+2a)2 

and 
[p‘a‘y 

9 4  = { u R ’ ~  -q[p’a’]’}93 - ( K  + 2 ~ r ) ~ c r ~ R ’ ~  - 2crK2(K + 2cr) ~ R’2 
Substituting these expressions into (9) we find : 

K+6a c ~ R ’ ~  2aK2 

This is the expression for entropy of the chain when the middle point of 
the channel has coordinates t, 9. i in an underformed state. Having no 
possibility to analyze here the origin of the different terms in the expression 
(12) we would like only to point out that the first one is due to the fluctuations 
of the submolecules junction point. For a free chain ( K  = 0) that is equal to 
3k /2  corresponding to three degrees of freedom. When K + cc only one 
degree of freedom is left (fluctuations along the channel) and the first term 
turns into k/2 .  As for the elastic properties, this term is of no importance 
since it does not depend on the deformation, but it contributes to the final 
result when the equilibrium swelling and birefringence are calculated. The 
second term in (12) is due to the change of the distance between chain ends, 
and the third one is due to the change of the mean square distance between 
the middle point of the chain and the straight line connecting its ends, i.e. 
due to the change of chain “transversal dimensions”. 

To obtain S 2 ,  an average entropy for the chains having end-to-end vector 
R in an unstrained system, the expression (12) must be averaged over all the 
channel conformations possible, i.e. over all accessible positions of its middle 
point. According to the assumptions made earlier, the proper distribution 
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106 L. S. PRISS 

function has the form : 

x exp{ -ci[p2+(a-fi)z]} d5 dq d i  (13) 
Hence 

1 z2 1 Y2 1 xz 
2a 4 2a 4 2ci 4 

2 2 ( 5  2 ) = -+-; ( q  ) = -+-; (i ) = -+- (14) 

Substituting (14) into (12) and bearing in mind that owing to independence 
of the coordinates the average value of the product is equal to the product 
of the average values of the comultipliers, we have 

To obtain S, the entropy of the strained network, we need two more 
averagings: over all possible orientations of vector R and over all possible 
values of its modulus, then multiplying the result by v - number of network 
chains per unit volume. Such averagings have already been made in19 (see 
formulae (8H12) in the work). Using the result obtained there one can write 

where Rg = N12, the mean square length of an isolated molecule consisting 
of N links, 

are incomplete elliptic integrals of the 1st and 2nd order, respectively, which 
modulus a? and argument f i  are defined by the’ relations : 

(18) 
Asymmetry of the expression (16) relative to li  is connected with the 

assumption ,Il 2 ,I2 2 A 3  made during the last averaging. And the original 
expression (15) has a completely symmetrical form. Supposing A1 = R 2  = 

a?’ = [n:(n; - n:)l/[ l :(n: -A:)] ; sin fi  = , , / m / n 1  
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ELASTICITY/BIREFRINGENCE OF RUBBERS 107 

l3  = 1 in (16), we find the entropy of underformed network 
vk K +6a 3vk ( R z )  
2 K + 2 a  2 ( R i )  

s 2vk ( K  ~ T2")' 0 -  

and the free energy increment at the deformation of the network 
AF = - T ( S - S o )  

The expression (20)  within an accuracy of the coefficient in front of the 
figure brackets coincides with the result previously obtained in "*19. Having 
left for a time the comparison of consequences from the expression with 
experiment let us pass to consideration of birefringence in a deformed 
network. 

We shall start from the result of Kuhn and Grunz5 according to which the 
polarizabilities of a single chain in the direction of its end-to-end vector and 
in the perpendicular one ( y l  and y 2 ,  respectively within the accuracy of the 
first non-vanishing term in the expansion over degrees of the end-to-end 
distance R, are equal to : 

where a1 and u2 are longitudinal and lateral polarizabilities of the chain link. 
Applying these relations to each submolecule and using the well-known 

optical formulaez6 one can write the components of the polarizability tensor 
of a deformed network P i j  as: 

z v  

pii = [ ( Y l k - Y Z k )  cosz $ i k + Y Z k l  (22)  
k 

where the summation is performed over all the submolecules per network 
unit volume and cos $ i k  are the directional cosines of each submolecule. It 
is evident that, 

cosz $ x k  = x,"/r," ; cosz $ y k  = yt /r:  ; cosz $zk  = z:/r: 

at 1 < k < v and 

cos2 $ x k  = (n1x-x)z/(p-?)2; cos2 $,,k = ( 1 2  Y-y)z/(a'-?)z; 
- (308' $ l k  = (1, z - Z)'/(@ -?)' at V -k 1 d k d 2V (23)  
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108 L. s. I’KISS 

Substituting (21) and (23) into (22) we have 

P,, = Po+-(a1 2v -a2) { 3 [ ( ;-;2) + 

- (;;) - ( N12 ,I 
5 

(P - ?)2\ 

and similar expressions for P,, and P z z .  Here Po is referred to as polarizability 
of an unstrained network : 

a1 +2a, ” 
Po = -~ 1 N k  

k = l  

and the angular brackets mean the averaging over all the chain confornia- 
tions at a given channel position, over all channel positions possible, over 
the modulus and orientations ofvector R’. The values of ( r 2 / N 1 2 )  + 
N 1 2 )  have been already obtained earlier (see formulae (5H16)) and the prob- 
lem reduces to  calculation of mean square values of the submolecules length 
projections. To do  this it is convenient to introduce an auxiliary parameter 
“a” into the formula (6) for the distribution function W ( x ,  y, z )  dx  dy d z  
W3(x,  y, z) d.x dy dz = exp{ - a[ax2 + y 2  + z2 + a(,llX - x)’ + (1, Y - y)’ 

+(,I3 Z - z) ’ ] ] )  . exp{ - K k ’ ) }  dx dy dz (26) 
It is easy to see that 

= - { In [ l]( W3(x, y, z )  dx dy dz 
- IT, 

- in./’ (27) 

where “r” means the averaging over all chain conformations at the channel 
location given. 

By adding the exponents in (26) taking into consideration the expression 
(4) and diagonalizing the resulting polynom B’(x, y, z, 1 )  in  the same manner 
as before, one has 

- 

- [da l,,- I 

9; 9; LJyA 
B’(x’, y’, z’, 1) = g l x ’ 2  $7 y’2 +, z‘2 +, 

9 1  9 2  9 3  

and 
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ELASTICITY/BIREFRlNGENCE OF RUBBERS 109 

which after putting in (27), gives: 

and their derivatives 

= 2a2( K +a)( K + 2a)A:X’ + 2a3( K + 2 ~ x ) R ’ ~  - 2aq(K + 2a)’[P’R’I2 
f l =  1 

-2aq(K +2a)A:X2[fi’l?I2 +2aqK2A:A:((Y -vZ)’ 
+ 2aK2(K + 2a)1:5’ + 2aq2(K + 2 ~ ) A f X ~ ( f i ’ R ’ ) ~  
-4aqK(K + 2a)A:gX(fi’R’) (35) 

after putting of (10). ( 1  1). (34)  and (35) in (30)  we have 

The next averaging based on the distribution function and taking into 
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110 L. S. PRISS 

consideration the relations (14) results in : 

n:x2 + n: Y + n: z2 1 - 2  [ n:x2(nfx2+nI: Y Z  + n " ; Z )  

(n:xZ+n; Y 2 + n : z 2 ) 2  

It is easy to see that after adding (37) to the similar expressions for the other 
projections we obtain the same expression as within the square brackets in 
formula (1  5). 

Let us make now the averaging based on the orientations of vector R'. 
Note that the average value of the expression in figure brackets in formula 
(37) has been already obtained and is equal to : 

(38) 

Thus it leaves only the average values of the terms like A:X2/R" to be 
calculated. Passing to spherical coordinates and using the procedure of 2o 

we have : 
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By differentiating @(A,, L 2 ,  A3) we obtain the final expressions for the main 
polarizabilities of a deformed network : 

where 
2v 
5 

P1 = Po+-(a l -a2)  

is a common term in the expressions for Pi,. Asymmetry Pii relative to Ai is 
connected with the assumption I I  2 A 2  I, made while calculating 
@(A,, A 2 ,  A,) and expressions (39). 
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112 L. S.  PRlSS 

Passing from the polarizabilities to the refractive indexes by means of the 

(43) 
Lorentz-Lorenz formula 

( n 2  - l)/(nZ + 2) = (4n/3). P 
we have 

hence 

where i i is the mean value of the refractive index, P and P are two of the 
three main polarizabilities given by Eq. (41). 

COMPARISON OF THE THEORY WITH EXPERIMENT 

A detailed comparison of the consequences from the expression (20) with the 
deformational dependences of various types has already been carried out in 
the work.'" Particularly it has been found in these works that for an uniaxial 
tension the connection between the actual stress IJ and the extension ratio /I 
is given by the relation : 

tan- '  J E T ]  (46) - -+ -  -++-- 1 3 ,I2 A5-4A2 
,I 213-1 2(~3-1)3/2 

The form of the dependence in Mooney-Rivlin coordinates5 at C1 = 
vkT/2((R2)/(R;)) = 0.5 and C, = vkT/2[K/(K+2~t)]~ = 1 is shown in 
Figure 4. As one can see from the figure, the dependence of a/2(,12 - l/,I) on 
l/1 has a pronounced linear part (deviation from linearity is less than 1 ' I ( , )  

lying within the limits 0.25 < l/A < 0.85, i.e. in that region of I I  variation 
where experimental data may be obtained with sufficient accuracy. Such a 
form of the dependence of stress on extension ratio is equivalent to  Mooney 
Rivlin formula confirmed perfectly for uniaxial extension by numerous 
experimental data5.  2 8  As for the deviations from the linearity at l/A < 0.25 
and l/,I > 0.85, they can not be found in common experiments, in the first 
case, due to inaccessibility of the region A > 4.0 to be measured (non-Gaussian 
effects arise). in the second case, large experimental errors at small deforma- 
tions. Experimental data confirming the existence of such deviations are 
given in the work." 
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FIGURE 4 Theoretical dependencies for uniaxial extension in Mooney Rivl in coordinates. 
I- n/2 ( A 2 -  l / A )  (formula (46)) at C, = 0.5, C, = 1.0; 2~--An/2(A2- l/A) (formula (50)) at C ,  
= 0.5. C, = 1.0, c = 1.0 and K ( K  + Zr) = 1 ; 3 - @ , / ( A 2  - l/A); 4-02/(L2 - l / A ) .  

Let us calculate now the value of birefringence in rubber at uniaxial exten- 
sion. Assuming PI = P,,, P z  = P,,, in formula (35) and ,I1 = A ;  A z  = ,I3 = 
1/JA and bearing in mind that3' 

(47) 
1 1 
2 8 

E ( / ~ , u ? )  = A o - -  A ,@' - -  A z ~ 4 - . . .  

where 
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we find 
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x tan-’  ,/TI 11 
From the comparison of the formulae (46) one can easily see that the latter 

contains the extra terms (the first square bracket in formula (50)) along with 
the expression proportional to n. Thus it follows from the theory suggested 
that Bruster’s law does not hold, contrary to  numerous experimental data. 
Let us analyse how essential the contradiction is. For the sake of this let us 
consider the dependence of An/2(A2 - 1/1) on l/1. In Figure 4 the dependences 
are shown of @ , / ( A 2  - l/1) and 02/(12 - l/1) on 1/1. They are practically 
linear in the whole interval of A accessible for the measurements. Their limiting 
values at 1 + 1 are equal to 0.200 and 0.533, respectively. Unfortunately, we 
cannot compare the values of coefficients in front of square brackets in (50) 
since the values of K are unknown and one is not sure that the relation be- 
tween the coefficients will be the same when dividing the chain into a larger 
number of submolecules. But assuming K / 2 ( K  +2a) = 1 then the contribu- 
tion into An from the extra term must be less than 40% of the term m2 
contribution. 

Thus according to  the theory presented, the dependences of An on 1 must 
be close to  a straight line in Mooney-Rivlin coordinates, but their slope 
should be slightly larger than that for the corresponding ones for n. In Figure 
4 the dependence of An/2(A2 - l/1) on l/1, calculated by the formula (50) at 
CI = 0.5; C ,  = 1.0; K/(K+2a) = 1, and c = 2 7 ~ v ( i i ~ + 2 ) ~ ( a , - a ~ ) / 4 5 i i k T  = 
1, is shown. At such a relation between (T and An Bruster’s law is held with 
sufficient accuracy. The ratio An/c is changed only by 10 % when 1 varying 
from 1 to 3. That is well within the limits of the experimental errors for the 
most of experiments. 

The literature evidence21*22 shows that the dependence of An on A are 
really linearized in Mooney-Rivlin coordinates, i.e. analogous to the stress 

(51) 
they can be presented in the form: 

(52)  
At the same time A 2 / A 1  # &/El. The scattering of the data, however, is very 

a/2(A2 - l /A)  = A1 + A2/1 

An/2(L2 - l/1) = B1 + B2/1 
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large. Thus, according to Ishikawa and Nagai2’ studying three samples of 
cis-polybutadiene at different temperatures the ratio B2 A JB1 A 2  varies 
from 1.04 to 2.44, and for three out of twelve their results given there it is 
even less than 1. In the work of Ilavsky and studying ten samples of 
Poly(2-hydroxyethyl methacrylate) with various density of network cross- 
links for four cases out of twenty-eight the value of B2 A ‘ / B , A 2  < 1 were also 
observed. However, judging by the datum scattering these results should be 
regarded as experimental errors. And average values of B2 A l / B , A 2  are equal 
to 1.3 in the first work and to 1.7 in the second one that is in reasonable agree- 
ment with the theory suggested. More detailed examination of the theory 
would be possible only after analysing the structure of the coefficients in 
formula (50) and obtaining more reliable experimental data. 

As mentioned above the detailed comparison of the consequences from 
the expression (20) for various types of deformational dependences has al- 
ready been carried out in the work.’ The model of a “channel” used here 
gives not only the possibility of more strict presentation of the theory based 
on the ideas about steric interaction of the network chains but helps to reveal 
the structure of the coefficient C ,  (an analog of C2 in Mooney-Rivlin equa- 
tion). It gives new possibilities for further experimental checks which will 
be the subject of the following works. 
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